Check how well you know the geometry by solving construction problems on a triangular grid.
> 300+ tasks: from very simple to really hard
> 26 subjects to explore
> 70+ geometric terms in a glossary
> Easy to use
> Table of records in the Game Center
*** About ***
Pythagorea 60° is a collection of more than 300 geometric problems of different kind that can be solved without complex constructions or calculations. All objects are drawn on a grid whose cells are equilateral triangles. A lot of levels can be solved using just your geometric intuition or by finding natural laws, regularity, and symmetry.
*** Just play ***
There are no sophisticated instruments and moves are not counted. You can construct straight lines and segments only and set points in line intersections. It looks very easy but it is enough to provide an infinite number of interesting problems and unexpected challenges.
*** Is this game for you? ***
Euclidea users can take a different view of constructions, discover new methods and tricks, and check their geometric intuition.
Pythagorea users who played on a square grid will not be bored. The triangular grid is full of surprises.
If you have just started your acquaintance with geometry, the game will help you understand important ideas and properties of the Euclidean geometry.
If you passed the course of geometry some time ago, the game will be useful to renew and check your knowledge because it covers most of ideas and notions of the elementary geometry.
If you are not on good terms with geometry, Pythagorea 60° will help you to discover another side of the subject. We get a lot of user responses that Pythagorea and Euclidea made it possible to see the beauty and naturalness of geometric constructions and even fall in love with geometry.
And do not miss your chance to familiarize children with mathematics. Pythagorea is an excellent way to make friends with geometry and benefit from spending time together.
*** All definitions at your fingertips ***
If you forgot a definition, you can instantly find it in the app’s glossary. To find the definition of any term that is used in conditions of a problem, just tap on the Info (“i”) button.
*** Main topics ***
> Length, distance, and area
> Parallels and perpendiculars
> Angles and triangles
> Angle and perpendicular bisectors, medians, and altitudes
> Pythagorean Theorem
> Circles and tangents
> Parallelograms, trapezoids, and rhombuses
> Symmetry, reflection, and rotation
*** Why Pythagorea ***
Pythagoras of Samos was a Greek philosopher and mathematician. He lived in 6th century BC. One of the most famous geometric facts bears his name: the Pythagorean Theorem states that in a right-angled triangle the area of the square on the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares of the other two sides. While playing Pythagorea you often meet right angles and rely on the Pythagorean Theorem to compare lengths of segments and distances between points. That is why the game is named after Pythagoras.
*** Questions? Comments? ***
Send in your inquiries and stay up-to-date on the latest Pythagorea 60° news at https://www.euclidea.xyz/
Pythagorea 60°:三角網格幾何
通過解決三角形網格上的構造問題,檢查您對幾何的了解程度。
> 277個任務:從非常簡單到非常困難
> 24門學科探索
詞彙表中的> 66個幾何術語
>易於使用
*** 關於 ***
畢達哥拉斯(Pythagorea)60°收集了270多種不同類型的幾何問題,無需複雜的結構或計算即可解決。所有對象均繪製在其單元格為等邊三角形的網格上。僅憑您的幾何直覺或找到自然定律,規律性和對稱性,就可以解決很多層次。
*** 只是玩 ***
沒有精密的儀器,也不算移動。您只能構造直線和線段,並在直線相交處設置點。它看起來很簡單,但是足以提供無數有趣的問題和意外的挑戰。
***這個遊戲適合你嗎? ***
歐幾里得用戶可以從不同的角度看待結構,發現新的方法和技巧,並檢查其幾何直覺。
在方形網格上玩的畢達哥拉斯用戶不會感到無聊。三角形的網格充滿了驚喜。
如果您剛開始接觸幾何,該遊戲將幫助您了解歐幾里得幾何的重要思想和特性。
如果您在一段時間之前通過了幾何學課程,那麼該遊戲將對您更新和檢查您的知識很有用,因為它涵蓋了基本幾何學的大部分思想和觀念。
如果您對幾何學不太滿意,畢達哥拉斯60°可以幫助您發現物體的另一面。我們得到了很多用戶的反饋,即畢達哥利亞和歐幾里得使看到幾何構造的美麗和自然甚至迷上了幾何成為可能。
也不要錯過讓孩子熟悉數學的機會。 Pythagorea是結交幾何朋友並從一起度過時中受益的絕佳方法。
***所有定義唾手可得***
如果您忘記了定義,則可以在應用程序的詞彙表中立即找到它。要查找在問題情況下使用的任何術語的定義,只需點擊信息(“ i”)按鈕。
*** 主要議題 ***
>長度,距離和麵積
>平行線和垂直線
>角度和三角形
>角和垂直平分線,中位數和高度
勾股定理
>圓和切線
>平行四邊形,梯形和菱形
>對稱,反射和旋轉
***為什麼畢達哥拉斯***
薩摩斯島畢達哥拉斯是希臘哲學家和數學家。他住在公元前6世紀。最著名的幾何事實之一就是他的名字:畢達哥拉斯定理。它指出,在直角三角形中,斜邊的長度的平方(與直角相對的一側)等於其他兩側的平方之和。玩畢達哥拉斯時,您經常會遇到直角並依靠勾股定理來比較線段的長度和點之間的距離。這就是遊戲以畢達哥拉斯命名的原因。
***有問題嗎?評論? ***
發送您的詢問,並在http://www.euclidea.xyz/上了解最新的畢達哥里亞60°新聞。